|
基于YOLOv5的车辆目标检测算法轻量化改进 |
|
|
|
摘要点击次数: 286 |
全文下载次数: 46 |
中文摘要: |
针对传统路端车辆目标检测算法参数多、检测速度较慢等问题,提出了基于YOLOv5 的车辆目标检测算法轻量化改进。首先,选用轻量化 EfficientnetV2 卷积神经网络对原骨干网络进行重构,同时在网络中引入 GAM 注意力机制;其次,为平衡 CIoU 损失和 IoU 损失在损失函数中的权重,引入 α-CIoU 损失代替原有的 CIoU 损失;最后,使用 soft-NMS 算法替换原有的 NMS 非极大值抑制算法。结果表明:相比原算法,改进后算法的精度提升了.51%,检测速度提升了 8.6%,模型大小降低了 31.7%;改进后的模型在提升检测速度的同时,还提高了路端车辆目标的检测性能。 |
英文摘要: |
|
查看全文 查看/发表评论 |
关闭 |
|
|
|